
Relief Valve KITO® VD/TA

Without EC certificate and C € - designation

DN	ANSI	С	н	kg*	setting (mbar)	
					min.	max.
25 PN 40	1"	240	200	10	2.5	105
32 PN 40	1 1/4"	240	212	12	2.5	95
40 PN 40	1 1/2"	350	272	18	1.8	300
50 PN 16	2"	350	267	19	1.8	270
65 PN 16	2 1/2"	350	287	20	1.5	165
80 PN 16	3"	350	325	25	1.6	195
100 PN 16	4"	450	357	30	1.6	260
125 PN 16	5"	500	394	35	1.4	215
150 PN 16	6"	550	441	42	1.7	230

Dimensions in mm

Standard valve setting 7-30 mbar -different settings against additional price-

Construction length C can be adapted to customers wish to local situation.

Design subject to change

Standard design housing

: steel, stainless steel mat. no. 1.4571

valve seat and spindle : stainless steel mat. no. 1.4571

valve sealing gasket

: NBR, Viton, PTFE

flange connection

: HD 3822, PTFE : DIN EN 1092-1 form,

ANSI 150 lbs. RF

Application

as inline armature with venting or breather valve function for vessels.

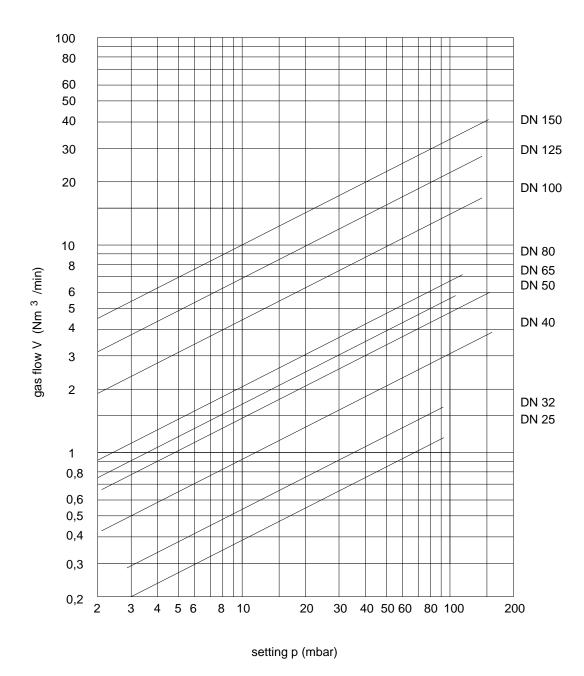
Preferably used for installation in pipes.

Depending on the installation, the valve can be used as pressure or vacuum valve.

It can also be used as non-return safety device or overflow valve.

performance curves: F 0.30 N

^{*} Indicated weights are understood without weight load and refer to the standard design.



Flow capacity V based on air of a density ρ = 1.29 kg/m³ at T = 273 K and atmospheric pressure p = 1.013 mbar. For other gases the flow can be approximately calculated by

$$\dot{V} = \dot{V}_b \cdot \sqrt{\frac{\rho_b}{1.29}} \text{ or } \dot{V}_b = \dot{V} \cdot \sqrt{\frac{1.29}{\rho_b}}$$

Air flow capacity at 40% above valve setting (see DIN 4119). If different accumulations are required see page A 32 for correcting factor.

Curves indicated by — require special weight loads.

Design subject to change

